

KAEMPFEROL 3- α -D-GLUCOPYRANOSIDE-7- α -L-RHAMNOPYRANOSIDE FROM *ERYTHROXYLON CUNEIFOLIUM*

RAÚL P. A. IÑIGO, DORA I. A. DE IGLESIAS and CÉSAR A. N. CATAIAN*

Instituto de Química Orgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán Ayacucho 491
S.M. de Tucumán 4000, Argentina

(Received 20 July 1987)

Key Word Index—*Erythroxylon cuneifolium*, Erythroxylaceae, flavonols, kaempferol 3- α -D-glucopyranoside-7- α -L-rhamnoside

Abstract—Kaempferol 3- α -D-glucopyranoside-7- α -L-rhamnoside, a novel glycoside with the rare α -D-glucopyranosyl moiety was identified in the aerial parts of *Erythroxylon cuneifolium*. Kaempferol 3,7-di-rhamnoside, ombuín 3-rutinoside and ombuín 3-rutinoside-5-glucoside were also characterized

INTRODUCTION

In continuation of our work on Argentine *Erythroxylon* species [1, 2] we now report the isolation of four flavonoid glycosides from *Erythroxylon cuneifolium* (Mart.) Schulz, one of which was identified as kaempferol 3- α -D-glucopyranoside-7- α -rhamnoside (**1**), a rare example of an α -D-glucopyranose-containing flavonoid.

The aqueous subextract from the defatted methanolic extract of *E. cuneifolium* showed four major spots on TLC (Si gel, CHCl_3 -MeOH-HOAc 40:14:3) with R_f 0.07, 0.47, 0.59 and 0.75. Separation on Sephadex LH20 and Si gel columns afforded pure compounds. The glycosides with R_f 0.75 and 0.07 were identified as 7,4'-dimethylquercetin (ombuín)-3-rutinoside (**2**) and ombuín 3-rutinoside-5-glucoside (**3**), respectively by comparison of their physical and spectroscopic data with those of authentic material previously isolated from *E. argentinum* [1].

Upon acid hydrolysis the compound with R_f 0.47 (**4**) gave kaempferol and two equivalents of rhamnose. The glycoside was identified as kaempferol 3,7- α -L-dirhamnoside (**4**) by UV spectroscopy [3] and ^1H NMR of the free glycoside as well as of its TMSi derivative.

Acid hydrolysis of the compound with R_f 0.59 (**1**) yielded an equimolecular mixture of glucose, rhamnose and kaempferol. UV analysis using shift reagents [3] showed that **1** was a 3,7-di-O-glycoside. Accordingly, the ^1H NMR spectrum (CDCl_3) of the TMSi derivative displayed two doublets at 6.36 and 6.78 with $J=2$ Hz assigned to H-6 and H-8 respectively. The 4'-monosubstitution on the B-ring was indicated by two doublets ($J=9$ Hz) of two protons each at 6.89 (H-3' and H-5') and 8.06 (H-2' and H-6'). The rhamnosyl anomeric proton appeared as a doublet ($J=1.5$ Hz) at 5.32 ppm while the rhamnosyl-methyl group appeared as an ill-shaped 3H doublet ($J=4$ Hz) at 1.23 ppm, a characteristic feature

[3] of 7- O - α -rhamnopyranosides. The glucosyl anomeric proton appeared as a broadened singlet ($J \approx 1$ Hz) at 5.65 ppm where the small value for the splitting of H-1" indicated that the glucose was α -linked [3-5] to the aglycone. (β -Glucosides typically show the anomeric proton as a doublet with $J \approx 7$ Hz). A broadened doublet ($J=2.4$ Hz) at 4.37 ppm was assigned to H-2" by DR experiments. The remaining sugar protons appeared as a complex multiplet between 3.2-4.1 ppm. This glycoside was not affected by β -glucosidase but it was rapidly hydrolysed with α -glucosidase† giving kaempferol 7-rhamnoside and glucose. Therefore, **1** was characterized as kaempferol 3- α -D-glucopyranoside-7- α -L-rhamnopyranoside.

Chemical studies on the genus *Erythroxylon* have been mostly directed towards the alkaloids [6, 7] with only a few flavonoid investigations [1, 8-11]. Our results on *E. cuneifolium* and *E. argentinum* [1] are in line with the finding [8] that 3-O-glycosides of kaempferol and quercetin (or their O-methylated derivatives) are typical for the genus. The present report of an α -glucopyranosyl-containing flavonoid suggests that a search for this kind of glycoside should be carried out in order to evaluate its possible chemotaxonomical significance in the genus.

EXPERIMENTAL

^1H NMR spectra were recorded on a Brucker FT 80 (80 MHz) in the solvents stated. For sugar identification a Waters HPLC equipment (M 45 pump, U6K injector and R-401 differential refractometer) with a Waters Carbohydrate Analysis column and acetonitrile-water 4:1 at a flow rate of 1.2 ml min⁻¹ was used.

Plant material Aerial parts of *E. cuneifolium* were collected by Mr P. R. Legname on the margins of 'Piray-Guazu' rivulet between Eldorado and San Pedro, Misiones Province, Argentina.

† α -Glucosidase Type III (Sigma) kindly supplied by Dr M. Dankert (Fundación Campomar, Buenos Aires) was used.

*Author to whom correspondence should be addressed.

tina A voucher specimen has been deposited at the Miguel Lillo Institute (Tucumán, Argentina) under No 7390

Extraction and isolation of the flavonoids. Dried aerial parts of *E. cuneifolium* were successively extracted with heptane and MeOH room temp. The methanolic extract (7.5% rel to dry plant) was successively extracted with CHCl_3 (16.4% rel to MeOH extract), H_2O (64%) and MeOH (19.6%). CC on Sephadex LH 20 of the aqueous subextract using MeOH as eluent yielded three main (Shinoda positive test) fractions. Fraction 1 showed a major constituent on TLC (Si gel, CHCl_3 -MeOH-HOAc 40:14:3, R_f 0.07) which by further CC on Si gel using CHCl_3 and increasing amounts of MeOH (from 33 to 50%) yielded pure 7,4'-dimethylquercetin 3-rutinoside-5-glucoside (3) that was identified by its spectroscopic data and comparison with authentic material previously isolated from *E. argentinum* [1]. Fraction 2 from the Sephadex column showed two spots on TLC with R_f 0.47 and 0.59 corresponding to compounds 4 and 1, respectively, which were purified by CC on Si gel and CHCl_3 -MeOH 4:1 as solvent. Fraction 3 from the Sephadex column yielded almost pure 7,4'-dimethylquercetin 3-rutinoside (2) (R_f on TLC = 0.75) that was further purified by CC on Si gel as before and identified by UV, ^1H NMR and comparison with a standard [1].

Kaempferol-3,7- α -L-dirhamnoside (4) was isolated as pale-yellow crystals, mp 188–189° (H_2O) (reported [13] 186–188°). ^1H NMR (TMSi deriv, CDCl_3). δ 0.90 (d, 3H, J = 6 Hz, H-6''), 1.23 (d, 3H, J = 5 Hz, H-6''), 3.0–3.9 (m, sugar protons), 3.94 and 4.19 (two dd, 1H each, $J_1 \approx J_2 \approx 2$ Hz, H-2'' and H-2'''), 5.28 and 5.31 (two partially superimposed d, 1H each, both with $J \approx 2$ Hz, H-1'' and H-1'''), 6.44 (d, 1H, J = 2 Hz, H-6), 6.63 (d, 1H, J = 2 Hz, H-8), 6.94 (d, 2H, J = 9.5 Hz, H-3' and H-5'), 7.80 (d, 2H, J = 9.5 Hz, H-2' and H-6') ^1H NMR (free glycoside, $\text{Me}_2\text{SO}-d_6$) 0.81 (d, 3H, J = 5.6 Hz, H-6''), 1.12 (d, 3H, J = 5 Hz, H-6'''), 5.30 (d, 1H, J = 1.6 Hz, H-1''), 5.53 (br s, 1H, H-1'''), 6.43 (d, 1H, J = 2 Hz, H-6), 6.75 (d, 1H, J = 2 Hz, H-8), 6.91 (d, 2H, J = 8.8 Hz, H-3' and H-5'), 7.78 (d, 2H, J = 8.8 Hz, H-2' and H-6')

Kaempferol 3- α -D-glucopyranoside-7- α -L-rhamnoside (1). Pale-yellow crystals, mp 177–178° ($\text{H}_2\text{O}-\text{Me}_2\text{CO}$). UV λ_{max} MeOH 266, 318 (sh), 348, +NaOMe 256, 266, 296, 394; +AlCl₃ 274, 300 (sh), 350, 398, AlCl₃/HCl 274, 300 (sh), 350, 398, +NaOAc 266, 390, NaOAc/H₃BO₃ 266, 350. ^1H NMR (TMSi deriv, CDCl_3) discussed in the text. ^1H NMR (free glycoside, $\text{Me}_2\text{SO}-d_6$) 1.19 (ill-shaped d, 3H, J = 6 Hz, H-6''), 3.0–4.1 (m, sugar protons), 5.55 and 5.63 (broadened singlets, 1H each, H-1'' and H-1'', respectively), 6.45 (d, 1H, J = 1.7 Hz, H-6), 6.83 (d, 1H, J = 1.7 Hz, H-8), 6.90 (d, 2H, J = 8 Hz, H-3' and H-5'), 8.07 (d, 2H, J = 8 Hz, H-2' and H-6'), 12.6 (br s, 1H, 5-OH)

Acid hydrolysis of glycosides. The glycoside dissolved in a minimum of 7% aq. H_2SO_4 was refluxed 1 hr and the aglycone extracted with EtOAc. The aq. soln was neutralized with powdered BaCO₃ (magnetic stirring overnight), filtered, the water distilled off *in vacuo* and the residue examined by TLC on cellulose. For HPLC the residue was dried under vacuum, dissolved in acetonitrile- H_2O 4:1 and analysed using a Waters Carbohydrate Analysis column and sugar standards.

Hydrolysis of 1 with α -glucosidase. To the glycoside 1 (6 mg) dissolved in P₁ buffer pH 6.8 (8 ml), 4 drops of α -glucosidase (Type III Sigma) suspension were added and the mixture incubated 4 hr at 37°. After concentration the residue dissolved in MeOH was chromatographed on a Sephadex LH20 column, to give Kaempferol-7-rhamnoside, characterized by UV spectroscopy and acid hydrolysis to aglycone and sugar (identified as above).

Acknowledgements.—We thank Consejo Nacional de Investigaciones de la República Argentina and Consejo de Investigaciones de la Universidad Nacional de Tucumán for financial support.

REFERENCES

- 1 Iñigo, R P A and Pomilio, A B (1985) *Phytochemistry* **24**, 347
- 2 Iñigo, R P A and Pomilio, A B (1984) *An Asoc. Quim. Argent.* **72**, 255
- 3 Mabry, T J, Markham, K. R. and Thomas, M B (1970) *The Systematic Identification of Flavonoids*. Springer, New York
- 4 Harborne, J B, Mabry, T. J and Mabry, H (1975) *The Flavonoids* Part 1. Academic Press New York
- 5 Lemeieux, R U, Kulling, R K, Bernstein, H. J and Schneider, W G (1958) *J Am Chem Soc* **80**, 6098
- 6 Evans, W C (1981) *J. Ethnopharmacol* **3**, 265
- 7 Hegnauer, R (1981) *J. Ethnopharmacol* **3**, 279
- 8 Bohm, B A, Phillips, D W and Ganders, F R (1981) *J. Nat. Prod.* **44**, 676
- 9 Bezanger-Beaquesne, L, Guilbert, N and Deneck, D (1965) *Ann. Pharm. Fr* **23**, 377
- 10 Paris, R R. and Delaveau, P (1963) *Compt. Rend.* **256**, 301
- 11 Bate-Smith, E C (1962) *J. Linn. Soc. London, Botany* **58**, 95
- 12 Geissman, T A (1962) *The Chemistry of Flavonoid Compounds*. Macmillan, New York